Sends an AI request to supported Large Language Models (LLMs) and extracts metadata in form of key-value pairs. In this request, both the prompt and the output can be freeform. Metadata template setup before sending the request is not required.
The AI agent to be used for extraction.
The items that LLM will process. Currently, you can use files only.
"123"
The ID of the file.
"file"
The type of the item. Currently the value can be file
only.
Value is always file
"This is file content."
The content of the item, often the text representation.
"\"fields\":[{\"type\":\"string\",\"key\":\"name\",\"displayName\":\"Name\",\"description\":\"The customer name\",\"prompt\":\"Name is always the first word in the document\"},{\"type\":\"date\",\"key\":\"last_contacted_at\",\"displayName\":\"Last Contacted At\",\"description\":\"When this customer was last contacted at\"}]"
The prompt provided to a Large Language Model (LLM) in the request. The prompt can be up to 10000 characters long and it can be an XML or a JSON schema.
A response including the answer from the LLM.
An unexpected server error.
An unexpected error.
curl -i -L 'https://api.box.com/2.0/ai/extract' \
-H 'content-type: application/json' \
-H 'authorization: Bearer <ACCESS_TOKEN>' \
-d '{
"prompt": "Extract data related to contract conditions",
"items": [
{
"type": "file",
"id": "1497741268097"
}
],
"ai_agent": {
"type": "ai_agent_extract",
"long_text": {
"model": "azure__openai__gpt_4o_mini",
"prompt_template": "It is `{current_date}`, and I have $8000 and want to spend a week in the Azores. What should I see?",
},
"basic_text": {
"model": "azure__openai__gpt_4o_mini",
}
}
}'
await client.ai.createAiExtract({
prompt: 'firstName, lastName, location, yearOfBirth, company',
items: [new AiItemBase({ id: file.id })],
} satisfies AiExtract);
client.ai.create_ai_extract(
"firstName, lastName, location, yearOfBirth, company",
[AiItemBase(id=file.id)],
ai_agent=ai_extract_agent_config,
)
await client.Ai.CreateAiExtractAsync(requestBody: new AiExtract(prompt: "firstName, lastName, location, yearOfBirth, company", items: Array.AsReadOnly(new [] {new AiItemBase(id: file.Id)})));
try await client.ai.createAiExtract(requestBody: AiExtract(prompt: "firstName, lastName, location, yearOfBirth, company", items: [AiItemBase(id: file.id)]))
BoxAIResponse response = BoxAI.extractMetadataFreeform(
api,
"firstName, lastName, location, yearOfBirth, company",
Collections.singletonList(new BoxAIItem("123456", BoxAIItem.Type.FILE))
);
{
"ai_agent_info": {
"models": [
{
"name": "azure__openai__text_embedding_ada_002",
"provider": "azure",
"supported_purpose": "embedding"
}
]
},
"answer": "Public APIs are important because of key and important reasons.",
"completion_reason": "done",
"created_at": "2012-12-12T10:53:43-08:00"
}