Join BoxWorks 2024 to discover what's possible with content and AI!

Register now!

Extract metadata from file (structured)

Guides Box AI Extract metadata from file (structured)
Edit this page

Extract metadata from file (structured)

Box AI API is currently a beta feature offered subject to Box’s Main Beta Agreement, and the available capabilities may change. Box AI API is available to all Enterprise Plus customers.

With Box AI API, you can extract metadata from the provided file and get the result in the form of key-value pairs. As input, you can either create a structure using the fields parameter, or use an already defined metadata template. To learn more about creating templates, see Creating metadata templates in the Admin Console or use the metadata template API.

Send a request

To send a request, use the POST /2.0/ai/extract_structured endpoint.

Make sure you have generated the developer token to authorize your app. See prerequisites for using Box AI for details.

cURL
curl -i -L 'https://api.box.com/2.0/ai/extract_structured' \
     -H 'content-type: application/json' \
     -H 'authorization: Bearer <ACCESS_TOKEN>' \
     -d '{
        "items": [
          {
            "id": "12345678",
            "type": "file",
            "content": "This is file content."
          }
        ],
        "metadata_template": {
            "template_key": "",
            "type": "metadata_template",
            "scope": ""
        },
        "fields": [
            {
              "key": "name",
              "description": "The name of the person.",
              "displayName": "Name",
              "prompt": "The name is the first and last name from the email address.",
              "type": "string",
              "options": [
                {
                  "key": "First Name"
                },
                {
                  "key": "Last Name"
                }
              ]
            }
        ],
        "ai_agent": {
          "type": "ai_agent_extract",
          "long_text": {
            "model": "azure__openai__gpt_3_5_turbo_16k",
            "system_message": "You are a helpful travel assistant specialized in budget travel",
            "prompt_template": "It is `{current_date}`, and I have $8000 and want to spend a week in the Azores. What should I see?",
            "num_tokens_for_completion": 8400,
            "llm_endpoint_params": {
              "type": "openai_params",
              "temperature": 0,
              "top_p": 1,
              "frequency_penalty": 1.5,
              "presence_penalty": 1.5,
              "stop": "<|im_end|>"
            },
            "embeddings": {
              "model": "openai__text_embedding_ada_002",
              "strategy": {
                "id": "basic",
                "num_tokens_per_chunk": 64
              }
            }
          },
          "basic_text": {
            "model": "azure__openai__gpt_3_5_turbo_16k",
            "system_message": "You are a helpful travel assistant specialized in budget travel",
            "prompt_template": "It is `{current_date}`, and I have $8000 and want to spend a week in the Azores. What should I see?",
            "num_tokens_for_completion": 8400,
            "llm_endpoint_params": {
              "type": "openai_params",
              "temperature": 0,
              "top_p": 1,
              "frequency_penalty": 1.5,
              "presence_penalty": 1.5,
              "stop": "<|im_end|>"
            }
          }
        }
      }'
Python Gen
client.ai.create_ai_extract_structured(
    [AiItemBase(id=file.id)],
    metadata_template=CreateAiExtractStructuredMetadataTemplate(
        template_key=template_key, scope="enterprise"
    ),
)
.NET Gen
await client.Ai.CreateAiExtractStructuredAsync(requestBody: new AiExtractStructured(items: Array.AsReadOnly(new [] {new AiItemBase(id: file.Id)})) { MetadataTemplate = new AiExtractStructuredMetadataTemplateField() { TemplateKey = templateKey, Scope = "enterprise" } });
Java
BoxAIExtractMetadataTemplate template = new BoxAIExtractMetadataTemplate("templateKey", "enterprise");
BoxAIExtractStructuredResponse result = BoxAI.extractMetadataStructured(
    api,
    Collections.singletonList(new BoxAIItem("123456", BoxAIItem.Type.FILE)),
    template
);
JsonObject sourceJson = result.getSourceJson();

Parameters

To make a call, you must pass the following parameters. Mandatory parameters are in bold.

The items array can have exactly one element.

ParameterDescriptionExample
metadata_templateThe metadata template containing the fields to extract. For your request to work, you must provide either metadata_template or fields, but not both.
metadata_template.typeThe type of metadata template.metadata_template
metadata_template.scopeThe scope of the metadata template that can either be global or enterprise. Global templates are those available to any Box enterprise, whereas enterprise templates are bound to a specific enterprise.metadata_template
metadata_template.template_keyThe name of your metadata template.invoice
items.idBox file ID of the document. The ID must reference an actual file with an extension.1233039227512
items.typeThe type of the supplied input.file
items.contentThe content of the item, often the text representation.This article is about Box AI.
fields.typeThe type of the field. It include but is not limited to string, float, date, enum, and multiSelect.string
fields.descriptionA description of the field.The person's name.
fields.displayNameThe display name of the field.Name
fields.keyA unique identifier for the field.name
fields.optionsA list of options for this field. This is most often used in combination with the enum and multiSelect field types.[{"key":"First Name"},{"key":"Last Name"}]
fields.options.keyA unique identifier for the field.First Name
fields.promptAdditional context about the key (identifier) that may include how to find and format it.Name is the first and last name from the email address
ai_agentThe AI agent used to override the default agent configuration. This parameter allows you to, for example, replace the default LLM with a custom one using the model parameter, tweak the base prompt to allow for a more customized user experience, or change an LLM parameter, such as temperature, to make the results more or less creative. Before you use the ai_agent parameter, you can get the default configuration using the GET 2.0/ai_agent_default request. For specific use cases, see the AI model overrides tutorial.

Use case

Let's assume you want to extract the vendor name, invoice number, and a few more details from the following sample invoice:

sample invoice

Create the request

To get the response from Box AI, call POST /2.0/ai/extract endpoint with the following parameters:

  • items.type and items.id to specify the file to extract the data from.
  • fields to specify the data that you want to extract from the given file.
  • metadata_template to supply an already existing metadata template.

You can use either fields or metadata_template to specify your structure, but not both.

Using fields parameter

The fields parameter allows you to specify the data you want to extract. Each fields object has a subset of parameters you can use to add more information about the searched data. For example, you can add the field type, description, or even a prompt with some additional context.

curl --location 'https://api.box.com/2.0/ai/extract_structured' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer <ACCESS_TOKEN>'' \
--data '{
    "items": [
        {
            "id": "1517628697289",
            "type": "file"
        }
    ],
    "fields": [
        {
            "key": "document_type",
            "type": "enum",
            "prompt": "what type of document is this?",
            "options": [
                {
                    "key": "Invoice"
                },
                {
                    "key": "Purchase Order"
                },
                {
                    "key": "Unknown"
                }
            ]
        },
        {
            "key": "document_date",
            "type": "date"
        },
        {
            "key": "vendor",
            "description": "The name of the entity.",
            "prompt": "Which vendor is sending this document.",
            "type": "string"
        },
        {
            "key": "document_total",
            "type": "float"
        }
    ]
  }'

The response lists the specified fields and their values:

{
    "document_date": "2024-02-13",
    "vendor": "Quasar Innovations",
    "document_total": $1050,
    "document_type": "Purchase Order"
}

Using metadata template

If you prefer to use a metadata template, you can provide its template_key, type, and scope.

curl --location 'https://api.box.com/2.0/ai/extract_structured' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer <ACCESS_TOKEN>' \
--data '{
    "items": [
        {
            "id": "1517628697289",
            "type": "file"
        }
    ],
    "metadata_template": {
        "template_key": "rbInvoicePO",
        "type": "metadata_template",
        "scope": "enterprise_1134207681"
    }
}'

The response lists the fields included in the metadata template and their values:

{
  "documentDate": "February 13, 2024",
  "total": "$1050",
  "documentType": "Purchase Order",
  "vendor": "Quasar Innovations",
  "purchaseOrderNumber": "003"
}